import rospy
from geometry_msgs.msg import Twist, Point, Quaternion
import tf
from rbx1_nav.transform_utils import quat_to_angle, normalize_angle
from math import radians, copysign, sqrt, pow, pi
ここまではお馴染みですねclass NavSquare():
def __init__(self):
# Give the node a name
rospy.init_node('nav_square', anonymous=False)
# Set rospy to execute a shutdown function when terminating the script
rospy.on_shutdown(self.shutdown)
# How fast will we check the odometry values?
rate = 20
# Set the equivalent ROS rate variable
r = rospy.Rate(rate)
今回のスクリプトの周期は20Hzです # Set the parameters for the target square
goal_distance = rospy.get_param("~goal_distance", 1.0) # meters
goal_angle = rospy.get_param("~goal_angle", radians(90)) # degrees converted to radians
linear_speed = rospy.get_param("~linear_speed", 0.2) # meters per second
angular_speed = rospy.get_param("~angular_speed", 0.7) # radians per second
angular_tolerance = rospy.get_param("~angular_tolerance", radians(2)) # degrees to radians
今回のスクリプトでは、rospy.get_param()でパラメータを設定しています。
値は.launchファイルで与えます。
# Publisher to control the robot's speed
self.cmd_vel = rospy.Publisher('/cmd_vel', Twist)
# The base frame is base_footprint for the TurtleBot but base_link for Pi Robot
self.base_frame = rospy.get_param('~base_frame', '/base_link')
base frameはTurtlebotの場合は base_footprint, PiRobotの場合は base_link です
# The odom frame is usually just /odom
self.odom_frame = rospy.get_param('~odom_frame', '/odom')
# Initialize the tf listener
self.tf_listener = tf.TransformListener()
# Give tf some time to fill its buffer
rospy.sleep(2)
# Set the odom frame
self.odom_frame = '/odom'
オドメトリのフレームは /odom です。 # Find out if the robot uses /base_link or /base_footprint
try:
self.tf_listener.waitForTransform(self.odom_frame, '/base_footprint', rospy.Time(), rospy.Duration(1.0))
self.base_frame = '/base_footprint'
except (tf.Exception, tf.ConnectivityException, tf.LookupException):
try:
self.tf_listener.waitForTransform(self.odom_frame, '/base_link', rospy.Time(), rospy.Duration(1.0))
self.base_frame = '/base_link'
except (tf.Exception, tf.ConnectivityException, tf.LookupException):
rospy.loginfo("Cannot find transform between /odom and /base_link or /base_footprint")
rospy.signal_shutdown("tf Exception")
/base_link あるいは /base_footprint # Initialize the position variable as a Point type
position = Point()
# Cycle through the four sides of the square
for i in range(4):
位置を初期化して、四角形に一辺づつ動くので、繰り返しを4にします。 # Initialize the movement command
move_cmd = Twist()
# Set the movement command to forward motion
move_cmd.linear.x = linear_speed
# Get the starting position values
(position, rotation) = self.get_odom()
x_start = position.x
y_start = position.y
移動のためのTwistメッセージを初期化して、直進の移動スピードを設定して、現在のオドメトリの値を初期位置・姿勢に代入します。
# Keep track of the distance traveled
distance = 0
# Enter the loop to move along a side
while distance < goal_distance and not rospy.is_shutdown():
# Publish the Twist message and sleep 1 cycle
self.cmd_vel.publish(move_cmd)
r.sleep()
# Get the current position
(position, rotation) = self.get_odom()
# Compute the Euclidean distance from the start
distance = sqrt(pow((position.x - x_start), 2) +
pow((position.y - y_start), 2))
指定した距離だけ動くために。
速度をパブリッシュして、1サイクルだけスリープします。
自己位置(オドメトリの値)を取得して、初期位置からの移動距離を求めます。
# Stop the robot before rotating
move_cmd = Twist()
self.cmd_vel.publish(move_cmd)
rospy.sleep(1.0)
# Set the movement command to a rotation
move_cmd.angular.z = angular_speed
# Track the last angle measured
last_angle = rotation
# Track how far we have turned
turn_angle = 0
# Begin the rotation
while abs(turn_angle + angular_tolerance) < abs(goal_angle) and not rospy.is_shutdown():
# Publish the Twist message and sleep 1 cycle
self.cmd_vel.publish(move_cmd)
r.sleep()
# Get the current rotation
(position, rotation) = self.get_odom()
# Compute the amount of rotation since the last lopp
delta_angle = normalize_angle(rotation - last_angle)
turn_angle += delta_angle
last_angle = rotation
同様に、90度回転します。
で、また直進、90度回転、直進、90度回転、直進、90度回転
これで四角形に沿って移動しました。
0 件のコメント:
コメントを投稿